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NATURAL FREQUENCIES OF AN INFINITE BEAM
ON A SIMPLE INERTIAL FOUNDATION
MODELYt
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Abstract—A simple inertial foundation model consisting of a 3-D shear layer resting on a bed of
closely spaced individual rods capable of wave propagation in the axial direction is suggested here.
The frequency equation for an infinite beam resting on such a foundation is determined. It is found
to be the same as one given for a beam resting on a 3-D inertial layer. Therefore, this model can
be successfully used for considering the effect of the inertia of the foundation on the dynamic
response of the structures resting on it.

NOMENCLATURE

bending rigidity of the beam

width of the beam

speed of wave propagation in foundation rods
property of the shear layer

depth of foundation rods

elastic constant for Winkler springs
axial stiffness of foundation rods

mass per unit length of the beam
inertia of the vibrating load
foundation pressures

magnitude of the vibrating load

depth ratio

axial displacement of foundation rods
vertical displacement of the shear layer
vertical displacement of the beam
non-dimensional frequency ratios
normal stress in the foundation
driving frequency.
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1. INTRODUCTION

The natural frequency of a railroad track was first determined by Timoshenko[l1]. He
modeled the track as an infinite beam resting on a massless Winkler foundation. He arrived
at a simple expression for the natural frequency wg = \/(k/m), where k is the Winkler
constant and m is the mass per unit length of the beam. Various other investigations about
the vibrations of footings and strips have shown that the mass of the base has a significant
effect on the dynamic response of the footings and strips(2-5]. Hence, it is essential to
consider the mass of the supporting foundation for determining the natural frequencies of
an infinite beam.

The natural frequencies of an infinite beam resting on a 3-D inertial elastic layer were
determined in Ref. [6]. If the beam is very light as compared to the mass of the supporting
foundation, the frequency equation was the same as that of a rod in axial vibration, which
is fixed at the bottom and free at the top. It was observed that the resonance phenomenon
occurred due to reflection of the waves from the boundary. This suggests consideration of
a foundation model consisting of closely spaced individual rods, capable of wave propa-
gation in the axial direction (like an inertial Winkler model). Therefore, the foundation is
modeled as closely spaced individual rods (mass density p and elastic constant k) of length
H, fixed at the bottom and connected at the top, to a 3-D shear layer with constant G
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Fig. 1. Beam on a 3-D inertial foundation model.

(Fig. 1). The elastic constants for this model k and G, are determined by comparing the re-
sulting frequency equation for the beam with the corresponding frequency equation given
in Ref. [6]. As shown in Fig. 1, the beam is subject to a concentrated oscillating load
P cos wyt with mass M,

2. DETERMINATION OF THE FOUNDATION RESPONSE

The pressure exerted by the foundation is
G.(x,y,1) = —GVI(x, y, )+ p1(x, 3, 1) M

where j,(x, y, t) is the pressure exerted by the rods on the shear layer, and W(x, y, ¢) is the
displacement of the shear layer. The motion of the *foundation rods” is governed by the
familiar 1-D wave equation
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where i(x, y, z, {) is the displacement of the rods, and c, is the velocity of wave propagation
in the rod. The boundary and the matching conditions are

#(x,y,0,0) =0 and a(x,y, H, 1) = w(x,y,1). 3
It is assumed that the following equations are valid for large time ¢[7]:

w(x, y,1) = w(x, ) cos wo!
#(x,y,2,0) = u(x,y, z) COs Wt @
G,(x,y, 1) = 6,(x,y) cos Wyt

5i(x,3, 1) = pi(x,y) cos wot.
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Substitution of the above equations into eqns (1)-(3) results in the elimination of the
variable 7. They are written as

0, = —GViw+p, &)

Py w?
ot zgﬂu =0 (6)
u(x,y,0)=0 and u(x,y, H) = w(x,y). U]

Equation (6) with the boundary and the matching conditions, eqn (7), is then solved.
The result is

sin (002/6'0

u(x,y,2) = sin @ HJc

w(x, y). ®
The corresponding expression for the pressure p,(x, ), is given as
du
pixy = k"(&),-g ®

where k, is the foundation constant (axial stiffness of the rods).
Substitution of eqn (8) into eqn (9) results in the pressure expression

koo cot (M) w(x, »). {10)
Co (4

0

Pl(x)y) =

If the rods are non-inertial, then eqn (10) reduces to the familiar expression for the Winkler
model

P1(x,y) = kw(x, y) an

where k is the elastic constant for the Winkler springs. Noting the above result, eqn (10)
is rearranged and written as

Pi(x,y) = ky* cot (y*)w(x,») (12)

where y* = wH/c, is the non-dimensional frequency ratio. Substitution of the above
equation into eqn (5) results in the relationship between the pressure exerted by the foun-
dation o,, and the displacement of the shear layer w

0, = —GViw+ky* cot (y*)w. (13)

Next, we assume that the solution for the displacement, w, can be expressed in the
form of a symmetric double Fourier integral

w(x,y) = J:o J:o % cos ax cos By da df. (14)

Substitution of the above equation into eqn (13) results in the expression for the pressure
o
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a,(x,y) = J;m J:o [G(a® + B*)+ky* cot (y*)]A4] cos ax cos By da df s

where, the only unknown is 4.

3. MATCHING THE BEAM RESPONSE WITH THE FOUNDATION RESPONSE

The constant A'(a) is determined by matching the response of the beam with the
response of the foundation. The equation of motion for the beam is

04w, 0w %

0w -
B+ m—a—t-zi = [P cos wo:—M,,-a?-l] 5(x)—p(x, 1) (16)

where w,(x, 7) is the vertical displacement of the beam, B the bending rigidity, m the mass
per unit length, and j(x,?) is the corresponding pressure exerted on the beam by the
foundation. Assuming that the response quantities are in phase with the foundation response
(eqn (4)); ie.

wi(x, 1) = wi(x) cos wt

17
B(x,1) = p(x) cos wyt (17)
the steady state equation of motion becomes
d*w, , )
B———dx‘ — mwiw, = [P+ Mywiw,]18(x)~p(x). (18)

The response of the beam, as well as the pressure distribution beneath the beam, is
expressed in the form of a single Fourier integral

wi(x) = Jm C(a) cos ox da (19a)
0

p(x) = % J;m A() cos ax da. (19b)

1t is also assumed that the pressure distribution beneath the beam of width b, is uniform.
Hence

p(x) = ~bo,(x,0). (20)

Noting eqn (19b), it follows that the pressure distribution beneath the beam is
0,(x,0) =7lt J A () cos ax da @2n
0

where A,(x) = —A(«)/b. Assuming an even rectangular pressure distribution under the
beam in the y-direction, the above expression for the entire x-y plane may be written as a
double Fourier integral (Ref. [6], p. 68)
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5 [o [ A, sin%écosaxcosﬁy
a.(x,y)=— = J; J; 3 da df. 22)

Matching the pressure expression given above with eqn (15), we have

2sin%éA,

T TR BG@T+ )+ ky* cot 7))’

23)

Substitution of eqn (23) into eqn (14) determines the displacement of the beam at its center
line (y = 0)

2 A, cos ax sin 5
W 0) = - ?L j BiGG + B+ hr* oot (o] O 9P 4)

which is rewritten as

2 A;T(q) cos ax
w(x,0) = — =G J —-—-—;2-—-—-— da (25)
where
T(@) = f e dr @26)
o 147 2_}_kb y* cot (¥¥)
4Gq*

where ¢ = ab/2 and t = B/« are the new non-dimensional variables. The integral in eqn (26)
is evaluated using tables of integrals (Ref. [8], p. 408)

kb2y* cot (r*))]
. 1—exp [——q\/(ﬁ + -—-—~——--————4qu

T(q) = :2' T+ kbz‘)?‘ cot (v*) . 27
4Gq*

Substitution of eqn (19) into eqn (18) results in the relationship between 4; and C

P4+ Mowiw, (0)+bA,(a)
nBfa* —mw?i/B)] )

Clo) = (28)

Use of the above expression for C{x) in eqn (19a) results in the deflection of the beam as

© [P+ Mw}w,(0)+bA,(2)] cos ax
nB(a* —mwi/B)

wi(x) = da, 29

Next, the unknown A; is determined by matching the deflection of the beam and the
displacement of the foundation (eqn (25)) at the surface of contact. The result is

BAS 23:12-C
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[P+ Mow%w,(O)]ozzbﬁ

Ai(@) = — 30
@) 20T () (¢* -8 +4°] ¢
where
_ B@2/by’
&= n(
_ mwi(b/2)*
d= R 31
Using the expression for 4,(x) in eqn (25), the displacement of the beam is found as
_ P+Mowiw,(0) [ T(q) cos 2gx/b
MOETT T ) e -a -
Solving the above equation for the displacement under the load, we have
_ PF¥(wy)
O = T i) .
where
1 ® T(q)
F* = —g— dqg. 4
(@) =176 L F+eT@lg =38 7 49

The expression for the displacement under the load with the mass M, is given in the above
equation, which consists of an integral. Next, the natural frequencies are determined by
noting the frequencies at which the above equation becomes infinite.

4. THE NATURAL FREQUENCIES OF THE BEAM WHEN THE LOAD HAS MASS M,
It is evident from eqn (33) that the displacement will become infinite if
MQQ)%F*(Q)Q) =1 (35)

which is the equation for determining the natural frequencies of the beam. If the mass of
the vibrating load, M,, is negligible, then the displacement will become infinite if 7*(w) —
co. It is fairly easy to show that the integral, F*(w,), becomes infinite near the left end
point, g = 0, if (Ref. [6], p. 71)

lim e57T(g) = ¢’. (36)

Using eqn (27), the behaviour of T(g) for small values of ¢ is determined as

- oo 457
g T@) = k57y* cot 0 {‘*”‘P [‘ 2 G ' 7

Substitution of eqns (37) and (31) into egn (36) resuits in the following frequency equation:
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mwl = kby* cot (%) . (38)

-en |5 (5)]

Using the standard definition of the velocity of wave propagation in the rods

-

where k, is the foundation stiffness and p is the mass density of the foundation, eqn (38)
may be rewritten in the non-dimensional form as

Myt = cot (y*) (40)
. *
BN EYCETD)
where
M* = m/pbH.
If the parameters k, G, and k, are chosen as
k= (A+2u)/H
ko =A+2u 41)
G=kH?*|2
then eqn (40) becomes
My = cot (%) : 42)
e -1 (5]
After some rearrangement, the above equation can also be written in the form
My = cot (") 43)

ST

which is exactly the same as the frequency equation obtained for an infinite beam resting
on a 3-D inertial layer (Ref. [6], p. 73). It should be noted that the frequency variable y* is
the same as the variable f used in Ref. [6] and 4* = y*b/2H. Thus, the model (Fig. 1) used
here is satisfactory as far as the determination of the natural frequencies is concerned.

Next, we determine the frequency equation for the beam when the load has mass M,
by using the parameters given in eqn (41). Equation (35) is written in the non-dimensional
form as

2
RM'B¥Fo(h) = % (44)

where 4% = by*[2H, M’ = M,/pb’, and F*(h*) is defined as
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U (@
F }‘ﬁ e T (43)

where the mass of the beam m, is neglected and

| —exp [_q \/ ( - Rh* cot 2(2}2*/12))]
yid q
2 1

T@ =3 RK* cot (2h*/R)
R

(46)

5. NUMERICAL RESULTS AND COMPARISON WITH EXPERIMENTAL DATA

In this section, validity of the frequency equation, eqn (44), is examined by comparing
the natural frequencies obtained from it with those found by Schneider[9] and Ono and
Itoo[10] from their experiments.

Schneider{9] has given a detailed account of the investigations carried out at the track
test bench of the Institute of Ground Transportation of the Technical University of Munich.
The railroad track consisted of the rails and nine ties laid on the layers of ballast and sand
in a box. The track was then excited by a vibrator with an equivalent unsprung weight of
3000 kg. The resulting dynamic stiffness was noted. The resonant frequencies were the ones
at which the dynamic stiffness was minimum. For the given experimental setup two resonant
frequencies were recorded as f; = 30 Hz and £, = 78 Hz. Since the range of oscillation was
limited to 0~100 Hz, higher natural frequencies were not recorded.

The other parameters for Schneider’s experiment are[9]; the mass per unit length of
the rails and ties m = 76 kg s> m~2, the mass density of the foundation p = 196 kg s? m~*,
the mass of the vibrating load M, = 3000/9.81 = 312 kg s’ m~!, the modulus of elasticity
of the foundation E = 0.85x 107 kg m~?, Poisson’s ratio v = 0.3, the width of the ties
b = 2.6 m, and the depth of the layer H = 2.3 m.

Using these values, other parameters are found, as, the depth ratio R = /H = 1.13,
the mass ratio M’ = M,/pb>=0.09, Lamé constants 1= 0.49x10" kg m~2, and
p=0327x10"kgm™2,

Inserting these parameters into egns (45) and (46) and solving eqn (44) numerically
for the first two roots yields the non-dimensional frequencies, AT = 0.887 and A% = 2.531.

The corresponding natural frequencies are

- g¢((z+zp)/p) — 2624 Hz

fi= %\/ ((A+2p)/p) = 74.86 Hz.

Therefore, the natural frequencies obtained using the theory developed here agree closely
with the experimental results of Schneider.

Ono and Itoo[10] studied the vibrations of a test track of & m length which was laid
using 50 kg rails, prestressed concrete ties and crushed stone ballast. The track was then
excited using a vibrator with an equivalent unsprung weight of 1800 kg. The range of
oscillations of the vibrator was 800-2500 r.p.m. The recorded resonant frequencies were
fi=19Hzand f, = 29.58 Hz.

The other parameters are[10]; the mass per unit length of the track m = 76 kg s’m”
the mass density of the foundatxon p =196 kg s m™* the mass of the vxbratmg
load M, = 1800/9.81 = 183 kg s> m~', Poisson’s ratio v = 0 3, and the width of the ties
b = 2.0 m. Hence, the mass ratio M’ = M,/pb* = 0.117.

The modulus of elasticity for the foundation material and the depth of the foundation
were not provided by Ono and Itoo[10]. Therefore, the values for these parameters are
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assumed so that one of the theoretical frequencies coincides with the corresponding exper-
imental value. The assumed parameters are: the modulus of elasticity of the layer
E =0.65x10" kg m~?, and the depth of the subgrade H = 8.5 m. Hence, the depth ratio
R = b/H = 0.235, Lamé constants A = 0.375x 10" kg m~2 and 4 = 0.25x 10" kg m~2.
Inserting these parameters into eqns (45) and (46) and solving eqn (44) numerically
for the first three roots results in 4T = 0.185, h% = 0.554, and A% = 0.923.
The corresponding natural frequencies are

fi= B J@+ 200 = 622 He
fa= g%\/((}wl-z;l)/p) = 18.63 Hz

*
fi= '2%\/((1+2ﬂ)/p) = 31.04 Hz.

It is of interest to note that the second and the third natural frequency agrees very well
with the corresponding experimental value of Ono and Itoo. The first natural frequency
was not recorded by them because it fell outside the frequency range of the excitor.

6. CONCLUSIONS

A simple inertial model is presented for the dynamic analysis of an infinite beam resting
on an inertial layer. The resulting frequency equation is the same as the one for an actual
layer.

The frequency equation for determining the natural frequencies of the beam with the
concentrated mass at its center, is provided. The natural frequencies, determined by solving
this equation, agreed very closely with experimental results[9, 10].
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